Designing a Modern Skeleton
Programming Framework for
Heterogeneous and Parallel Systems

Licentiate seminar
AUQUSt Ernstsson

LINKOPING
IIQ" UNIVERSITY

Contents

e Introduction
* Individual contributions
* Dissemination

 Conclusions and future work

LINKOPING
UNIVERSITY

Introduction

LINKOPING
II." UNIVERSITY

Programmable computers are everywhere

 Soclety 1s increasingly dependent on computer systems
» In all shapes and sizes
* Increasingly more diverse and complex!

* Problem: Expert knowledge 1s needed to efficiently utilize such systems

LINKOPING
UNIVERSITY

Algorithmic skeletons

» Approach to parallel programming proposed by Cole in 1989

» Based on functional programming
* Many implementations exist today
« Scientific: SkePU, Musket, GrPPI, FastFlow, ...
* Industry: Nvidia Thrust, SYCL, C++ parallel STL, ...
 Different flavors of parallelism: data parallelism, task parallelism

 Different targets: multi-core, heterogeneous, cluster, ...

LINKOPING
UNIVERSITY

The SkePU framework

* Developed and maintained at Linkoping

University ﬂ
* C++-based
* Source-to-source compiler
* Goals
o Multi—backend Conceptual illustration of
dot product computation
in SkePU

» Automatic memory management

* Accessible interface

LINKOPING
UNIVERSITY

SkePU skeleton and container set 3 AF D

. Skeletons . Containers 0 88 teern Ceees
* Map * Vector
» MapPairs » Matrix BEE A ;
« MapOverlap * 3D Tensor =t \‘T:E D
 Reduce * 4D Tensor 7 T | T 0
* Scan _
. MapReduce o A R :
» MapPairsReduce {agsisgassas |:| -

uuuuuu

uuuuuu

LINKOPING
UNIVERSITY

SkePU programming interface

vl v2 result
int add(int a, int b)

w

return a + b;

auto vec_sum = Map(add);

\/

vec_sum(result, vl1l, v2);

LINKOPING
UNIVERSITY

SkePU backend structure

» Multi-backend with selection and tuning

C++ interface
(skeletons, smart containers,

OpenMP OpenCL CUDA MPI + StarPU

LINKOPING
UNIVERSITY

Contributions

LINKOPING
II." UNIVERSITY

Main contributions of this research

% %

2016 201/ 2019

SkePU 2 Lazy eval ' Multi- SkePU 3
with tiling variant UF + cluster

11

“SC_EXCESS

Qexazpro

LINKOPING
UNIVERSITY

2016

SkePU 2

Contribution
SkePU 2 with pre-compiler architecture

Int J Parallel Prog (2018) 46:62-80 O CrossMark
https://doi.org/10.1007/s10766-017-0490-5

SkePU 2: Flexible and Type-Safe Skeleton
Programming for Heterogeneous Parallel Systems

August Ernstsson!® - Lu Li! - Christoph Kessler!

Received: 30 September 2016 / Accepted: 10 January 2017 / Published online: 28 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this article we present SkePU 2, the next generation of the SkePU C++

skeleton programming framework for heterogeneous parallel systems. We critically
examine the design and limitations of the SkePU 1 programming interface. We present

2 a new, flexible and type-safe, interface for skeleton programming in SkePU 2, and a
I_l N KO pl NG source-to-source transformation tool which knows about SkePU 2 constructs such
‘ UNIVERSITY as skeletons and user functions. We demonstrate how the source-to-source compiler

transforms programs to enable efficient execution on parallel heterogeneous systems.
We show how SkePU 2 enables new use-cases and applications by increasing the

SkePU 2

» Original prototype of SkePU 2 from master’s thesis project
» Macro-based library -> source-to-source compiler toolchain
 New interface: shift to C++11 ("modern C++7)
 Great flexibility
» Improved type safety
* New implementation: variadic template meta-programming

* Builds on algorithms from SkePU 1

13

LINKOPING
UNIVERSITY

SkePU 2 compilation flow

Handled by build system

Program sources

Source-to-source compiler

Backend sources
(C++, OpenCL, etc.)

Backend compiler (e.g., GCC)

Executable

SkePU runtime
library

14

LINKOPING
UNIVERSITY

Contribution

2016

SkePU 2

2017

Lazy eval
with tiling

Lazy evaluations with access locality optimization

LINKOPING
UNIVERSITY

Received: 15 September 2017 Revised: 11 July 2018 Accepted: 29 August 2018

DOI: 10.1002/cpe.5003

SPECIAL ISSUE PAPER

Extending smart containers for data locality-aware
skeleton programming

August Ernstsson®™ | Christoph Kessler®

Department for Computer and Information
Science, Linkoping University, Link6ping,
Sweden

Correspondence

August Ernstsson, Department for Computer
and Information Science, Linkdping University,
Linkdping, Sweden.

Email: august.ernstsson@liu.se

Funding information
Swedish e-Science Research Centre; Swedish
National Graduate School in Computer Science

Summary

We present an extension for the SkePU skeleton programming framework to improve the per-
formance of sequences of transformations on smart containers. By using lazy evaluation, SkePU
records skeleton invocations and dependencies as directed by smart container operands. When
a partial result is required by a different part of the program, the run-time system will process
the entire lineage of skeleton invocations; tiling is applied to keep chunks of container data in
the working set for the whole sequence of transformations. The approach is inspired by big data
frameworks operating on large clusters where good data locality is crucial. We also consider ben-
efits other than data locality with the increased run-time information given by the lineage struc-
tures, such as backend selection for heterogeneous systems. Experimental evaluation of example
applications shows potential for performance improvements due to better cache utilization, as
long as the overhead of lineage construction and management is kept low.

KEYWORDS

lazy evaluation, loop tiling, skeleton programming, SkePU, smart containers

Lazy evaluation with lineages

» Inspiration: Big data analytics, e.g. Apache
Spark

» Idea: Delay skeleton evaluation

* Collect state information and form dependency
graph

» At an evaluation point, evaluate the DAG

» Optimize the computations with global
run-time information

8 add
mn: v8 v8

mn: v8 v8

mn: v8 v§

n: v8 v8

n: v8 v8
out: v8

v2

out: v5

m: v vl

n: v5 v9

3 square
n: v2
out: vl

0 add
n: v3 v4

16

6 generate

Ellipses = skeleton invocations
Boxes =smart containers

Arrows = dependencies

LINKOPING
UNIVERSITY

17

Tiling optimization on lineages
* Observation: Data-parallel skeleton lineages are separable along the
element boundaries

» A full skeleton invocation need not be evaluated in one go

» For a sequence of, e.g., maps, evaluate slices of the data set along the lineage

» Process chunks along cache line size) T1T1T LT T "
=> temporal access locality — 28 et
— i : / Ve ,
— i N O U L

No tiling Tiling on

LINKOPING
UNIVERSITY

Tiling optimization on lineages

» Parallel polynomial evaluation using

18

9
Horner’s method 5 | = 67108864 =
16777216

skepu::Vector<float> horner_eval_nonfused! = = 4194304 I
skepu::Vector<float> &coeffs, skepu::Vector<float> &x_vals) 41 = 1048576 I

| I
size_t degree = coeffs.sizel] - 1,
auto mult = skepu::Map(mult_f); 0 3 - I
auto add = skepu::Map<I1>(add_f); 0 |

= I
skepu::Vector<float> res(x_vals.size(), coeffs(degree)); = 2-
~ N o —— =
for (int i = degree-1;i>=0; --i)
{ 1-
mult(res, res, x_vals);
add(res, res, coeffs(il); IIIIIIIIIIIIIIIIIIII““
} O - [. . = = = = = =
103 104 10° 10° 10’ 108

return res; chunk size

)

LINKOPING
IIQ“ UNIVERSITY

2016 2017

SkePU 2 Lazy eval
with tiling

Contribution
Hybrid backend

The Journal of Supercomputing (2020) 76:5038-5056
https://doi.org/10.1007/511227-019-02824-7

Check for
updates

Hybrid CPU-GPU execution support in the skeleton
programming framework SkePU

Tomas Ohberg' - August Ernstsson'® . Christoph Kessler' ®

Published online: 25 March 2019
© The Author(s) 2019

Abstract

In this paper, we present a hybrid execution backend for the skeleton programming
framework SkePU. The backend is capable of automatically dividing the workload
and simultaneously executing the computation on a multi-core CPU and any number
of accelerators, such as GPUs. We show how to efficiently partition the workload
of skeletons such as Map, MapReduce, and Scan to allow hybrid execution on het-
erogeneous computer systems. We also show a unified way of predicting how the
workload should be partitioned based on performance modeling. With experiments
on typical skeleton instances, we show the speedup for all skeletons when using the
new hybrid backend. We also evaluate the performance on some real-world appli-

cations. Finally, we show that the new implementation gives higher and more reli-
able performance compared to an old hybrid execution implementation based on
dynamic scheduling.

I I " Ll N KO pl N G Keywords Heterogeneous computing - Hybrid execution - Skeleton programming -
. U N |VE RS |TY Workload partitioning

Hybrid backend

» Goal: To optimize utilization of a heterogeneous CPU+GPU system
» All execution units should be working in tandem

 Split the workload into smaller tasks and distribute among the system
» Task scheduling system: StarPU?

 Partition ratio: how much work to give to the CPU vs. the GPU?

20

LINKOPING
UNIVERSITY

Hybrid backend — Work partitioning

» Partitioning Map

Input 1

Input 2

Output

xPartition ratio

¥ X &

¥ X &

X X &

X X K X

CPU Thread #1

CPU Thread #2

CPU Thread #3

Accelerator backend

21

LINKOPING
UNIVERSITY

Hybrid backend — Work partitioning

» Partitioning MapOverlap

Input

W

¥ K &

¥ K &

NN

X K &

¥ KR K &

Output

CPU Thread #1

CPU Thread #2

CPU Thread #3

Accelerator backend

22

LINKOPING
UNIVERSITY

Hybrid backend — Work partitioning

» Partitioning Scan

LINKOPING
UNIVERSITY

Input

Output

« X « X « X X
X X X
X
X
CPU Thread #1 CPU Thread #2 CPU Thread #3
X
< X
Master CPU Thread
Array of missing values Accelerator backend
CPU Thread #1 CPU Thread #2 CPU Thread #3 Accelerator backend
X X
< X < X
X RN ¥ X K &K

23

2016 2017 2019

SkePU 2 Lazy eval [Multi-
with tiling variant UF

Contribution
Multi-variant user functions

Parallel Computing: Technology Trends

1 Foster et al. (Eds.)

© 2020 The authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200074

Multi-Variant User Functions for
Platform-Aware Skeleton Programming

August ERNSTSSON # and Christoph KESSLER # !
& PELAB, Dept. of Computer and Information Science

Linkoping University, 581 83 Linkoping, Sweden

Abstract. Today’s computer architectures are increasingly specialized and hetero-
geneous configurations of computational units are common. To provide efficient
programming of these systems while still achieving good performance, including
performance portability across platforms, high-level parallel programming libraries
and tool-chains are used, such as the skeleton programming framework SkePU.
SkePU works on heterogeneous systems by automatically generating program com-
ponents, "user functions", for multiple different execution units in the system, such
as CPU and GPU, from a high-level C++ program. This work extends this multi-
backend approach by providing the possibility for the programmer to provide ad-

ditional variants of these user functions tailored for different scenarios, such as
platform constraints. This paper introduces the overall approach of multi-variant
user functions, provides several use cases including explicit SIMD vectorization

= for supported hardware, and evaluates the result of these optimizations that can be
I " I_l N KO pl N G achieved using this extension.

U N |VE|'-\)S|TY Keywords. Skeleton programming, SkePU, Heterogeneous computing, Multi-
variant user functions, Vectorization

25

Multi-variant user functions

» Inspiration: Multi-variant components
» Idea: Allow expert programmers to provide hand-tuned user function variants
* For use on specific backends only

« SkePU single-source approach otherwise makes a single algorithm run on all
backends

 Variants are enabled at compile-time when the target hardware supports it
* E.g., A CPU with vectorization instructions

« XPDL platform modeling toolchain is used for feature lookup

LINKOPING
UNIVERSITY

Multi-variant user functions

User function variants
(subdirectories)

manifest.hpp

variant1.cpp

variant2.cpp

platform.xml

XPDL Compiler

Program sources

Source-to-source compiler

Backend sources
(C++, OpenCL, etc.)

Backend compiler (e.g., GCC)

Executable

26

LINKOPING
UNIVERSITY

Multi-variant user functions — Evaluation

* Median image filtering, three
approaches to find median value in
pixel region

B Histogram@CPU

B Histogram@OpenCL M Double Loop@OpenCL

100000
(/)]
S 10000
O
(@)
§ 1000
I= 100
o
£ 10
|_
1

" Double Loop@CPU

3 4 S} 6 /

Filter radius
(Region size grows quadratically)

27

qsort@CPU

Variant Time complexity | Memory complexity | Dependencies
Double loop | O(n?) O(1) None
Histogram O(n+ |DJ) O(|D)) None
gsort O(nlogn) O(n) C standard library
| rigiﬁzi}‘iéé 1px m;jian filter
II “ LINKOPING ‘ -
% UNIVERSITY 3px median filter 10px median filter

2016 2017 2019 2020

SkePU 2 Lazy eval [Multi- SkePU 3
with tiling variant UF + cluster

Contribution

SkePU 3 with new skeletons and cluster backend

LINKOPING
UNIVERSITY

Portable exploitation of parallel and heterogeneous HPC
architectures in neural simulation using SkePU

Sotirios Panagiotou
National Technical University of

spanagiotou@microlab.ntua.gr

Lazaros Papadopoulos
National Technical University of

August Ernstsson
Linkoping University, Sweden
Athens, Greece august.ernstsson@liu.se

Christoph Kessler
Linképing University, Sweden

Johan Ahlqvist
Linkoping University, Sweden
johan.ahlqvist@liu.se

Dimitrios Soudris
National Technical University of

Athens, Greece christoph.kessler@liu.se Athens, Greece

lpapadop@microlab.ntua.gr
ABSTRACT

The complexity of modern HPC systems requires the use of new
tools that support advanced programming models and offer porta-
bility and programmability of parallel and heterogeneous architec-
tures. In this work we evaluate the use of SkePU framework in an
HPC application from the neural computing domain. We demon-
strate the successful deployment of the application based on SkePU
using multiple back-ends (OpenMP, OpenCL and MPI) and present
lessons-learned towards future extensions of the SkePU framework.

KEYWORDS

dsoudris@microlab.ntua.gr

accelerator backend. Tools that assist application developers in
the process of exposing parallelization and exploiting accelerators
by reducing the required programming effort are highly desirable.
SkePU! [10] falls in this category. It is an open-source skeleton pro-
gramming framework for multicore CPUs and multi-GPU systems.
(Algorithmic) skeletons [6] are generic parallelizable high-level pro-
gramming constructs based on higher-order functions such as Map,
Reduce, Stencil or Scan, which model common dependence and data
access patterns and which can be parameterized in problem-specific
sequential code. Skeletons provide a high degree of abstraction and
portability with a quasi-sequential programming interface, as their

Noname manuscript No.
(will be inserted by the editor)

SkePU 3: Portable High-Level Programming of
Heterogeneous Systems and HPC Clusters

August Ernstsson - Johan Ahlqvist -
Stavroula Zouzoula . Christoph Kessler

Received: date / Accepted: date

Abstract We present the third generation of the C+4 based open-source
skeleton programming framework SkePU. Its main new features include new
skeletons, new data container types, support for returning multiple objects
from skeleton instances and user functions, support for specifying alterna-
tive platform-specific user functions to exploit e.g. custom SIMD instructions,
generalized scheduling variants for the multicore CPU backends, and a new

SkePU 3

 Collaborations within the EXA2PRO research project
» Application-framework co-design
» SkePU framework team working with application partners
* Cluster backend added for exascale computations
» Real-world applications being ported to SkePU

* Improved distribution and compatibility

29

LINKOPING
UNIVERSITY

SkePU 3 - New features sample

Tensors MapPairs MapPairsReduce
Cluster

backend

MatCol and
MatRow

Dynamic scheduling
on multi-core

Tuple return syntax

StarPU + MPI

C and Fortran wrappers

Performance
optimizations

Simplified memory

consistency model New MapOverlap syntax

30

LINKOPING
UNIVERSITY

SkePU 3 performance - Brain modeling on cluster

30720

15360 \ =@—Outer MPI Time

7680 N \ =3=|nner MPI Mat Time

3840 Inner MPl MatRow Time

* Brain simulation with
00,000 neurons and
200 time steps

(WY
O O
)) N
o o

N
(00)
-

240

Execution time (seconds)

120

60
Single-node Multi-node

30
1 2 4 8 16 32 64 128 256 512 1024

Cores

31

LINKOPING
UNIVERSITY

Dissemination and user feedback

LINKOPING
II." UNIVERSITY

Tutorials and labs

» The SkePU toolchain is being used in teaching

 Part of the multi-core and GPU programming course
» SkePU provides perspective on high-level parallel programming
 Student feedback is used to influence SkePU development

» E.g.: Revising the MapOverlap interface in SkePU 3

 SkePU has also been demonstrated in several hands-on tutorials in the
scientific community

33

LINKOPING
UNIVERSITY

Conclusions and future work

LINKOPING
II." UNIVERSITY

35

Conclusions

» Algorithmic skeletons is one approach for bridging the widening gap between
programming interfaces in parallel and heterogeneous systems

» SkePU implements skeletons with C++ interface and a source-to-source compiler toolchain

 This research is improving SkePU in several ways:

* Programmability is enhanced with new features and by listening to user experiences

* Performance is optimized with lazy evaluation, hybrid backends, and user function
variants

» Portability is increased as new systems and application domains can be targeted
through the cluster backend

LINKOPING
UNIVERSITY

36

Future work on high-level parallel programming and SkePU

« Work on SkePU continues with several research-oriented and feature-
oriented ideas planned

 Modernized tuner: Target more of the full feature set in SkePU 3
» Skeleton fusion: Complements run-time lineage optimization
» Further application case studies

 And more... see the thesis!

LINKOPING
UNIVERSITY

Thank you for listening.

LINKOPING
IIQ" UNIVERSITY

