
Designing a Modern Skeleton
Programming Framework for
Heterogeneous and Parallel Systems

August Ernstsson
Licentiate seminar

Designing a Modern Skeleton
Programming Framework for
Parallel and Heterogeneous
Systems

Linköping Studies in Science and Technology.
Licentiate Thesis No. 1886

August Ernstsson

August Ernstsson

Designing a M
odern Skeleton Program

m
ing Fram

ew
ork for Parallel and Heterogeneous System

s

 2020

FACULTY OF SCIENCE AND ENGINEERING
Linköping Studies in Science and Technology. Licentiate Thesis No. 1886, 2020
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Contents
• Introduction

• Individual contributions

• Dissemination

• Conclusions and future work

2

Introduction

Programmable computers are everywhere
• Society is increasingly dependent on computer systems

• In all shapes and sizes

• Increasingly more diverse and complex!

• Problem: Expert knowledge is needed to efficiently utilize such systems

4

Algorithmic skeletons
• Approach to parallel programming proposed by Cole in 1989

• Based on functional programming

• Many implementations exist today

• Scientific: SkePU, Musket, GrPPI, FastFlow, …

• Industry: Nvidia Thrust, SYCL, C++ parallel STL, …

• Different flavors of parallelism: data parallelism, task parallelism

• Different targets: multi-core, heterogeneous, cluster, …

5

The SkePU framework
• Developed and maintained at Linköping

University

• C++-based

• Source-to-source compiler

• Goals

• Multi-backend

• Automatic memory management

• Accessible interface

6

 MapReduce

Mult

Add

Conceptual	illustration	of	
dot	product	computation	

in	SkePU	

SkePU skeleton and container set
• Skeletons
• Map
• MapPairs
• MapOverlap
• Reduce
• Scan
• MapReduce
• MapPairsReduce

7

• Containers
• Vector
• Matrix
• 3D Tensor
• 4D Tensor

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

float func(T a, T b, MatRow<T> mr, Mat<T> m) { … }

resA

resB

res

skel(resA, resB, inputs…);

skel(res, inputs…);

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

O
ut

pu
t

Σ Σ Σ Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ Σ Σ Σ Σ Σ

Output

Region input

Region<T> r

float func(Region2D<T> m) { … }

Output Random-access

inputs

Mat<T> m

Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ

In
te

rm
ed

ia
te

Input

Output

Output

Input

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

Σ

Output

In
te

rm
ed

ia
te

Output

Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ

Input

1

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

float func(T a, T b, MatRow<T> mr, Mat<T> m) { … }

resA

resB

res

skel(resA, resB, inputs…);

skel(res, inputs…);

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

O
ut

pu
t

Σ Σ Σ Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ Σ Σ Σ Σ Σ

Output

Region input

Region<T> r

float func(Region2D<T> m) { … }

Output Random-access

inputs

Mat<T> m

Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ

In
te

rm
ed

ia
te

Input

Output

Output

Input

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

Σ

Output

In
te

rm
ed

ia
te

Output

Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ

Input

1

Hsize (dynamic)

Ha
rit

y

(s

ta
tic

)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

float func(T a, T b, MatRow<T> mr, Mat<T> m) { … }

resA

resB

res

skel(resA, resB, inputs…);

skel(res, inputs…);

Hsize (dynamic)

Ha
rit

y

(s

ta
tic

)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

O
ut

pu
t

Σ Σ Σ Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ Σ Σ Σ Σ Σ

Output

Region input

Region<T> r

float func(Region2D<T> m) { … }

Output Random-access

inputs

Mat<T> m

Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ

In
te

rm
ed

ia
te

Input

Output

Output

Input

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

Σ

Output

In
te

rm
ed

ia
te

Output

Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ

Input

1

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

float func(T a, T b, MatRow<T> mr, Mat<T> m) { … }

resA

resB

res

skel(resA, resB, inputs…);

skel(res, inputs…);

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

O
ut

pu
t

Σ Σ Σ Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ Σ Σ Σ Σ Σ

Output

Region input

Region<T> r

float func(Region2D<T> m) { … }

Output Random-access

inputs

Mat<T> m

Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ

In
te

rm
ed

ia
te

Input

Output

Output

Input

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

Σ

Output

In
te

rm
ed

ia
te

Output

Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ

Input

1

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

float func(T a, T b, MatRow<T> mr, Mat<T> m) { … }

resA

resB

res

skel(resA, resB, inputs…);

skel(res, inputs…);

Hsize (dynamic)

H
ar

ity

(s
ta

tic
)

Varity (static)

Vs
ize

 (d
yn

am
ic

)

Inputs

In
pu

ts

Output

i

j

O
ut

pu
t

Σ Σ Σ Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ Σ Σ Σ Σ Σ

Output

Region input

Region<T> r

float func(Region2D<T> m) { … }

Output Random-access

inputs

Mat<T> m

Σ

Σ
Σ
Σ
Σ
Σ
Σ

Σ

In
te

rm
ed

ia
te

Input

Output

Output

Input

Element-wise

inputs

Random-access-row

inputs

i

a b MatRow<T> mr

Random-access

inputs

Mat<T> m

Σ

Output

In
te

rm
ed

ia
te

Output

Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ
Partial Σ

Input

1

SkePU programming interface

8

int add(int a, int b)
{
 return a + b;

}

vec_sum(result, v1, v2);

auto vec_sum = Map(add);

Add

..

3

..

..

..

..

..

..

Add

Add

Add

Add

Add

Add

Add

.

2

.

.

.

.

.

.

.

1

.

.

.

.

.

.

v1 v2 result

SkePU backend structure
• Multi-backend with selection and tuning

9

C++ interface
(skeletons, smart containers, …)

C++ OpenMP OpenCL CUDA MPI + StarPU

CPU Multi-core CPU Accelerator GPU Cluster

Contributions

Main contributions of this research

11

2016

SkePU 2

2017

Lazy eval
with tiling

2018

Hybrid
backend

2019

Multi-
variant UF

2020

SkePU 3
+ cluster

Contribution
SkePU 2 with pre-compiler architecture

Int J Parallel Prog (2018) 46:62–80
https://doi.org/10.1007/s10766-017-0490-5

SkePU 2: Flexible and Type-Safe Skeleton
Programming for Heterogeneous Parallel Systems

August Ernstsson1 · Lu Li1 · Christoph Kessler1

Received: 30 September 2016 / Accepted: 10 January 2017 / Published online: 28 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this article we present SkePU 2, the next generation of the SkePU C++
skeleton programming framework for heterogeneous parallel systems. We critically
examine the design and limitations of the SkePU 1 programming interface.We present
a new, flexible and type-safe, interface for skeleton programming in SkePU 2, and a
source-to-source transformation tool which knows about SkePU 2 constructs such
as skeletons and user functions. We demonstrate how the source-to-source compiler
transforms programs to enable efficient execution on parallel heterogeneous systems.
We show how SkePU 2 enables new use-cases and applications by increasing the
flexibility from SkePU 1, and how programming errors can be caught earlier and
easier thanks to improved type safety. We propose a new skeleton, Call, unique in the
sense that it does not impose any predefined skeleton structure and can encapsulate
arbitrary user-defined multi-backend computations. We also discuss how the source-
to-source compiler can enable a new optimization opportunity by selecting among
multiple user function specializations when building a parallel program. Finally, we
show that the performance of our prototype SkePU 2 implementation closely matches
that of SkePU 1.

Keywords Skeleton programming · SkePU · Source-to-source transformation ·
C++11 · Heterogeneous parallel systems · Portability

B August Ernstsson
August.Ernstsson@liu.se

1 PELAB, Department of Computer and Information Science, Linköping University, Linköping,
Sweden

123

2016

SkePU 2

SkePU 2
• Original prototype of SkePU 2 from master’s thesis project

• Macro-based library -> source-to-source compiler toolchain

• New interface: shift to C++11 (”modern C++”)

• Great flexibility

• Improved type safety

• New implementation: variadic template meta-programming

• Builds on algorithms from SkePU 1

13

SkePU 2 compilation flow

14

Executable

Source-to-source	compiler

Backend	compiler	(e.g.,	GCC)

Program	sources

SkePU	runDme	
library

Backend	sources	
(C++,	OpenCL,	etc.)

H
an

dl
ed

	b
y	
bu

ild
	s
ys
te
m

Contribution
Lazy evaluations with access locality optimization

Received: 15 September 2017 Revised: 11 July 2018 Accepted: 29 August 2018

DOI: 10.1002/cpe.5003

S P E C I A L I S S U E P A P E R

Extending smart containers for data locality-aware
skeleton programming

August Ernstsson Christoph Kessler

Department for Computer and Information

Science, Linköping University, Linköping,

Sweden

Correspondence
August Ernstsson, Department for Computer

and Information Science, Linköping University,

Linköping, Sweden.

Email: august.ernstsson@liu.se

Funding information
Swedish e-Science Research Centre; Swedish

National Graduate School in Computer Science

Summary

We present an extension for the SkePU skeleton programming framework to improve the per-

formance of sequences of transformations on smart containers. By using lazy evaluation, SkePU

records skeleton invocations and dependencies as directed by smart container operands. When

a partial result is required by a different part of the program, the run-time system will process

the entire lineage of skeleton invocations; tiling is applied to keep chunks of container data in

the working set for the whole sequence of transformations. The approach is inspired by big data

frameworks operating on large clusters where good data locality is crucial. We also consider ben-

efits other than data locality with the increased run-time information given by the lineage struc-

tures, such as backend selection for heterogeneous systems. Experimental evaluation of example

applications shows potential for performance improvements due to better cache utilization, as

long as the overhead of lineage construction and management is kept low.

KEYWORDS

lazy evaluation, loop tiling, skeleton programming, SkePU, smart containers

1 INTRODUCTION

Contemporary computer architectures are increasingly parallel designs with multiple processor cores. In addition, massively parallel accelera-

tors, such as GPUs, make these systems heterogeneous architectures. This development is a consequence of the power and frequency limitations

for single, sequential processors. Parallel architectures help overcome this barrier and maintain Moore's law-like growth of computing power.

For programmers and programming languages designed for sequential and homogeneous systems, it is a challenge to utilize the resources avail-

able in modern computer systems in an efficient manner. The challenges are many: communication, synchronization, load distribution, and so on.

Higher-level parallel programming languages and frameworks, typically domain-specific, have been created to make abstractions on top of the hard-

ware as a solution to this challenge. Algorithmic skeleton frameworks are a class of high-level programming interfaces targeted primarily at multi-core

and heterogeneous systems. Skeleton programming is inspired by functional programming, with constructs such as map and reduce, which are pos-

sible to efficiently parallelize, while still being useful for a wide variety of problems. This article focuses on the skeleton programming framework

SkePU.*

In data centers and supercomputers, parallelization is taken to a different level. A large number of computer nodes are integrated with an inter-

connection network, processing large amounts of data. In these systems, computational resources typically exist in abundance, while data access

is the performance bottleneck. In big data analytics, frameworks with interfaces similar to algorithmic skeletons have been constructed to solve

mostly the same problems of programmability, performance, and portability. The MapReduce programming model1 from Google was the first suc-

cessful such framework. It gained popularity outside of Google though the open-source implementation Hadoop.† An evolution of MapReduce is

Spark,‡ like Hadoop open-source and maintained by the Apache Software Foundation.

*http://www.ida.liu.se/labs/pelab/skepu/
† http://hadoop.apache.org
‡ http://spark.apache.org

Concurrency Computat Pract Exper. 2019;31:e5003. wileyonlinelibrary.com/journal/cpe © 2018 John Wiley & Sons, Ltd. 1 of 13
https://doi.org/10.1002/cpe.5003

2016

SkePU 2

2017

Lazy eval
with tiling

Lazy evaluation with lineages
• Inspiration: Big data analytics, e.g. Apache

Spark

• Idea: Delay skeleton evaluation

• Collect state information and form dependency
graph

• At an evaluation point, evaluate the DAG

• Optimize the computations with global
run-time information

16

12 add
in: v8 v8
out: v8

v8

11 add
in: v8 v8
out: v8

10 add
in: v8 v8
out: v8

3 square
in: v2
out: v1

4 add
in: v5 v1
out: v5

v1

2 mult
in: v1 v3
out: v2

v2

1 copy
in: v1
out: v9

v9

0 add
in: v3 v4
out: v1

6 generate
in:

out: v6

7 add
in: v7 v6
out: v6

8 add
in: v8 v8
out: v8

9 add
in: v8 v8
out: v8

5 add
in: v5 v9
out: v5

v5

v6

Ellipses = skeleton invocations
Boxes = smart containers
Arrows = dependencies

Tiling optimization on lineages
• Observation: Data-parallel skeleton lineages are separable along the

element boundaries

• A full skeleton invocation need not be evaluated in one go

• For a sequence of, e.g., maps, evaluate slices of the data set along the lineage

• Process chunks along cache line size
=> temporal access locality

17

f0

f1

f2

f0

f1

f2

No	tiling Tiling	on

Tiling optimization on lineages
• Parallel polynomial evaluation using

Horner’s method

18

skepu::Vector<float> horner_eval_nonfused(
 skepu::Vector<float> &coeffs, skepu::Vector<float> &x_vals)
{
 size_t degree = coeffs.size() - 1;
 auto mult = skepu::Map(mult_f);
 auto add = skepu::Map<1>(add_f);

 skepu::Vector<float> res(x_vals.size(), coeffs(degree));

 for (int i = degree-1; i >= 0; --i)
 {
 mult(res, res, x_vals);
 add(res, res, coeffs(i));
 }

 return res;
}

Contribution
Hybrid backend

Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:5038–5056
https://doi.org/10.1007/s11227-019-02824-7

1 3

Hybrid CPU–GPU execution support in the skeleton
programming framework SkePU

Tomas Öhberg1 · August Ernstsson1 · Christoph Kessler1

Published online: 25 March 2019
© The Author(s) 2019

Abstract
In this paper, we present a hybrid execution backend for the skeleton programming
framework SkePU. The backend is capable of automatically dividing the workload
and simultaneously executing the computation on a multi-core CPU and any number
of accelerators, such as GPUs. We show how to efficiently partition the workload
of skeletons such as Map, MapReduce, and Scan to allow hybrid execution on het-
erogeneous computer systems. We also show a unified way of predicting how the
workload should be partitioned based on performance modeling. With experiments
on typical skeleton instances, we show the speedup for all skeletons when using the
new hybrid backend. We also evaluate the performance on some real-world appli-
cations. Finally, we show that the new implementation gives higher and more reli-
able performance compared to an old hybrid execution implementation based on
dynamic scheduling.

Keywords Heterogeneous computing · Hybrid execution · Skeleton programming ·
Workload partitioning

1 Introduction

The ever-growing demand for higher performance in computing, puts requirements
on modern programming tools. Today parallelism stands for the majority of the per-
formance potential and even if heterogeneous, multi-core and accelerator equipped
systems have been the norm for more than a decade, we still face the challenge of
automatically exploiting the performance potential of such systems. An effective
parallel programming framework should not only let the programmer implement the

 * August Ernstsson
 august.ernstsson@liu.se
 Tomas Öhberg
 tomasolof@hotmail.com

1 PELAB, Department of Computer and Information Science, Linköping University, Linköping,
Sweden

2016

SkePU 2

2017

Lazy eval
with tiling

2018

Hybrid
backend

Hybrid backend
• Goal: To optimize utilization of a heterogeneous CPU+GPU system

• All execution units should be working in tandem

• Split the workload into smaller tasks and distribute among the system

• Task scheduling system: StarPU?

• Partition ratio: how much work to give to the CPU vs. the GPU?

20

Hybrid backend — Work partitioning
• Partitioning Map

21

Partition	ratio

Hybrid backend — Work partitioning
• Partitioning MapOverlap

22

Hybrid backend — Work partitioning
• Partitioning Scan

23

Contribution
Multi-variant user functions

Multi- ariant User Functions for
Platform- ware Skeleton Programming

August ERNSTSSON a and Christoph KESSLER a 1

a PELAB, Dept. of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

Abstract. Today’s computer architectures are increasingly specialized and hetero-
geneous configurations of computational units are common. To provide efficient
programming of these systems while still achieving good performance, including
performance portability across platforms, high-level parallel programming libraries
and tool-chains are used, such as the skeleton programming framework SkePU.
SkePU works on heterogeneous systems by automatically generating program com-
ponents, "user functions", for multiple different execution units in the system, such
as CPU and GPU, from a high-level C++ program. This work extends this multi-
backend approach by providing the possibility for the programmer to provide ad-
ditional variants of these user functions tailored for different scenarios, such as
platform constraints. This paper introduces the overall approach of multi-variant
user functions, provides several use cases including explicit SIMD vectorization
for supported hardware, and evaluates the result of these optimizations that can be
achieved using this extension.

Keywords. Skeleton programming, SkePU, Heterogeneous computing, Multi-
variant user functions, Vectorization

1. Introduction

Programming of complex multi-core and heterogeneous computer architectures can be a
difficult task, especially when there is a desire to fully and efficiently utilize the available
processing resources. Managing the required workload distribution, synchronisation, and
data management often requires expert knowledge and long-time experience. This is
especially true if also performance portability is desired, as different systems can vary
widely in terms of both the number and types of processing cores, as well as in other
characteristics such as memory hierarchy.

High-level parallel programming frameworks aim to improve on this situation by re-
ducing the user-facing complexity of programs. A small number of highly optimized but
still general programming building blocks are presented through a high-level interface.
This category of frameworks include application specific languages, PGAS (Partitioned
Global Address Space) interfaces, dataflow models, and more, but most importantly for
this paper: the skeleton programming [4] concept, borrowing the higher-order operations
of functional programming such as map and reduce, and implemented as an abstrac-
tion level that is portable across both multi-core and heterogeneous computers and larger
supercomputer clusters. Skeleton programming uses generic building blocks encoding

V
A

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200074

475

2016

SkePU 2

2017

Lazy eval
with tiling

2018

Hybrid
backend

2019

Multi-
variant UF

Multi-variant user functions
• Inspiration: Multi-variant components

• Idea: Allow expert programmers to provide hand-tuned user function variants

• For use on specific backends only

• SkePU single-source approach otherwise makes a single algorithm run on all
backends

• Variants are enabled at compile-time when the target hardware supports it

• E.g., A CPU with vectorization instructions

• XPDL platform modeling toolchain is used for feature lookup

25

Multi-variant user functions

26

Executable

Source-to-source compiler

Backend compiler (e.g., GCC)

Program sources

SkePU
headers

Backend sources
(C++, OpenCL, etc.)

XPDL Compiler

platform.xml

manifest.hpp

variant1.cpp

variant2.cpp

User function variants

(subdirectories)

…
…

Multi-variant user functions — Evaluation
• Median image filtering, three

approaches to find median value in
pixel region

27

(Region size grows quadratically)

Contribution
SkePU 3 with new skeletons and cluster backend

Portable exploitation of parallel and heterogeneous HPC
architectures in neural simulation using SkePU

Sotirios Panagiotou
National Technical University of

Athens, Greece
spanagiotou@microlab.ntua.gr

August Ernstsson
Linköping University, Sweden

august.ernstsson@liu.se

Johan Ahlqvist
Linköping University, Sweden

johan.ahlqvist@liu.se

Lazaros Papadopoulos
National Technical University of

Athens, Greece
lpapadop@microlab.ntua.gr

Christoph Kessler
Linköping University, Sweden

christoph.kessler@liu.se

Dimitrios Soudris
National Technical University of

Athens, Greece
dsoudris@microlab.ntua.gr

ABSTRACT
The complexity of modern HPC systems requires the use of new
tools that support advanced programming models and o�er porta-
bility and programmability of parallel and heterogeneous architec-
tures. In this work we evaluate the use of SkePU framework in an
HPC application from the neural computing domain. We demon-
strate the successful deployment of the application based on SkePU
using multiple back-ends (OpenMP, OpenCL and MPI) and present
lessons-learned towards future extensions of the SkePU framework.

KEYWORDS
skeleton programming, neural simulation, HPC systems

1 INTRODUCTION
New generation HPC platforms consist of multiple heterogeneous
cores. The end of Dennard scaling points towards more hetero-
geneity at hardware level, further increasing the complexity of
applications. Examples include the upcoming exascale computing
systems in USA and Europe, which will be massively parallel and
highly heterogeneous, by integrating GPUs and various kinds of
accelerators (Multipurpose Processing Array, FPGA, etc.). A recent
trend is the combination of general-purpose CPUs with application-
speci�c accelerators in large-scale systems. Various HPC applica-
tion domains can bene�t from this trend, including simulations and
machine learning.

Programming parallel computing systems and accelerators is
challenging. E�ective exploitation of parallel systems requires tak-
ing into consideration synchronization, data locality and memory
management issues, requiring signi�cant programming e�ort by
developers. With respect to acceleration, each type of accelerator
has its own toolchain and programming model, forcing application
developers to rewrite large parts of the codebase all over for each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7131-5/20/05. . . $15.00
https://doi.org/10.1145/3378678.3391889

accelerator backend. Tools that assist application developers in
the process of exposing parallelization and exploiting accelerators
by reducing the required programming e�ort are highly desirable.
SkePU1 [10] falls in this category. It is an open-source skeleton pro-
gramming framework for multicore CPUs and multi-GPU systems.
(Algorithmic) skeletons [6] are generic parallelizable high-level pro-
gramming constructs based on higher-order functions such as Map,
Reduce, Stencil or Scan, which model common dependence and data
access patterns and which can be parameterized in problem-speci�c
sequential code. Skeletons provide a high degree of abstraction and
portability with a quasi-sequential programming interface, as their
implementations encapsulate all low-level and platform-speci�c
details such as parallelization, synchronization, communication,
memory management, accelerator usage and other optimizations.
Each SkePU skeleton comes with a set of backends targeting the
di�erent supported platforms, including OpenMP (multicore CPU),
OpenCL and CUDA (GPU) and StarPU-MPI (clusters).

Neural simulation, especially biophysically-detailed simulation,
is a HPC application type presenting a very high computational
load, due to both the numerical intensity of the models and the
large space and time scale of the simulations. This immense compu-
tational load is evidently e�ciently handled on HPC infrastructure;
the required memory is provided by thousands of nodes, working
in a single cluster [1], and computational performance has been
greatly boosted by manycore [5], GPU [3] and recon�gurable [12]
accelerators.

The insight that makes such massively-parallel implementations
possible is that most parts of the neural network can be simulated
in parallel within a single simulation step. To that end, there is a
rich variety of data-parallel numerical schemes for time-driven sim-
ulation that have been devised since the dawn of supercomputing,
and that also apply to neural simulations.

Computer simulation is a crucial part of the neuroscience re-
search process. Simulation speed is also important on another as-
pect of neuroscience: It constrains the complexity of neuron models
that can be explored. Neural models can only be as large and as wide
in time-scale as they still can be simulated within a practical time-
frame. So, computational performance de�nes the scale of feasible
neural simulations; more so that even available computer memory
does, due to the high numerical intensity of the calculations.

1SkePU: https://www.ida.liu.se/labs/pelab/skepu

Noname manuscript No.
(will be inserted by the editor)

SkePU 3: Portable High-Level Programming of

Heterogeneous Systems and HPC Clusters

August Ernstsson · Johan Ahlqvist ·
Stavroula Zouzoula · Christoph Kessler

Received: date / Accepted: date

Abstract We present the third generation of the C++ based open-source
skeleton programming framework SkePU. Its main new features include new
skeletons, new data container types, support for returning multiple objects
from skeleton instances and user functions, support for specifying alterna-
tive platform-specific user functions to exploit e.g. custom SIMD instructions,
generalized scheduling variants for the multicore CPU backends, and a new
cluster-backend targeting the custom MPI interface provided by the StarPU
task-based runtime system. We have also revised the smart data containers’
memory consistency model for automatic data sharing between main and de-
vice memory. The new features are the result of a two-year co-design e↵ort
collecting feedback from HPC application partners in the EU H2020 project
EXA2PRO (2018–2021), and target especially the HPC application domain
and HPC platforms. We evaluate the performance e↵ects of the new features
on high-end multicore CPU and GPU systems and on HPC clusters.

Keywords High-level parallel programming · Heterogeneous computing ·
Skeleton programming · Co-design approach · Cluster computing

1 Introduction

The recently started slowdown of Moore’s Law implies, for the foreseeable fu-
ture, that further performance growth in high-performance computing (HPC)
critically depends on e�ciently utilizing hardware resources, leveraging even
more heterogeneity in the form of accelerators such as GPUs and scaling up to
even higher degrees of cluster-level parallelism. This leads to programmabil-

August Ernstsson · Johan Ahlqvist · Stavroula Zouzoula · Christoph Kessler
PELAB, Dept. of Computer and Information Science
Linköping University
E-mail: <firstname>.<lastname>@liu.se

2016

SkePU 2

2017

Lazy eval
with tiling

2018

Hybrid
backend

2019

Multi-
variant UF

2020

SkePU 3
+ cluster

SkePU 3
• Collaborations within the EXA2PRO research project

• Application-framework co-design

• SkePU framework team working with application partners

• Cluster backend added for exascale computations

• Real-world applications being ported to SkePU

• Improved distribution and compatibility

29

SkePU 3 — New features sample

30

Cluster
backend

StarPU + MPI

Tensors

MatCol and
MatRow

MapPairs MapPairsReduce

Tuple return syntax Dynamic scheduling
on multi-core

Simplified memory
consistency model New MapOverlap syntax

C and Fortran wrappers

Performance
optimizations

SkePU 3 performance — Brain modeling on cluster

31

Single-node Multi-node

Cores

• Brain simulation with
90,000 neurons and
200 time steps

Dissemination and user feedback

Tutorials and labs
• The SkePU toolchain is being used in teaching

• Part of the multi-core and GPU programming course

• SkePU provides perspective on high-level parallel programming

• Student feedback is used to influence SkePU development

• E.g.: Revising the MapOverlap interface in SkePU 3

• SkePU has also been demonstrated in several hands-on tutorials in the
scientific community

33

Conclusions and future work

Conclusions
• Algorithmic skeletons is one approach for bridging the widening gap between

programming interfaces in parallel and heterogeneous systems

• SkePU implements skeletons with C++ interface and a source-to-source compiler toolchain

• This research is improving SkePU in several ways:

• Programmability is enhanced with new features and by listening to user experiences

• Performance is optimized with lazy evaluation, hybrid backends, and user function
variants

• Portability is increased as new systems and application domains can be targeted
through the cluster backend

35

• Work on SkePU continues with several research-oriented and feature-
oriented ideas planned

• Modernized tuner: Target more of the full feature set in SkePU 3

• Skeleton fusion: Complements run-time lineage optimization

• Further application case studies

• And more… see the thesis!

Future work on high-level parallel programming and SkePU

36

Thank you for listening.

