
Extending Smart Containers for Data
Locality-Aware Skeleton Programming

SkePU is open source (GPLv3)  
www.ida.liu.se/labs/pelab/skepu/

Approach: Lazy Evaluation and Skeleton Lineages

Goal: Tiling of Map Skeletons

 August Ernstsson Christoph Kessler
 Linköping University, Sweden Linköping University, Sweden

Skeleton Programming with SkePU

• High-level parallel programming paradigm

• Skeletons are higher-order functions with  
efficient parallel implementations

• SkePU: C++11 framework with Map, Reduce,  
MapReduce, MapOverlap, and Scan skeletons

• Skeletons are parameterized with user functions:  
such as add, mult, or more complex computations

• For heterogeneous systems: multi-backend (CPU+GPU)

• Smart containers wrap operand data and handle data
management and minimize data transfers with lazy copying

M
ap

Selected SkePU Publications
• A. Ernstsson, C. Kessler: Extending Smart Containers for Data Locality-Aware Skeleton

Programming. Presented at HLPP 2017, Valladolid, July 2017

• A. Ernstsson, L. Li, C. Kessler: SkePU 2: Flexible and Type-Safe Skeleton Programming
for Heterogeneous Parallel Systems. Int. J. of Parallel Programming, 2017

• U. Dastgeer and C. Kessler. Smart Containers and Skeleton Programming for GPU-
based Systems. Int. J. of Parallel Programming 44(3):506-530, June 2016

Example Program

Performance

• With each Map skeleton invocation handled in isolation, the
access patterns are not ideal for cache performance

• Example: a sequence of three Maps with f0, f1, f2:

Produced Lineage Graph

12 add
in: v8 v8
out: v8

v8

11 add
in: v8 v8
out: v8

10 add
in: v8 v8
out: v8

3 square
in: v2

out: v1

4 add
in: v5 v1
out: v5

v1

2 mult
in: v1 v3
out: v2

v2

1 copy
in: v1

out: v9

v9

0 add
in: v3 v4
out: v1

6 generate
in:

out: v6

7 add
in: v7 v6
out: v6

8 add
in: v8 v8
out: v8

9 add
in: v8 v8
out: v8

5 add
in: v5 v9
out: v5

v5

v6

• Arrows indicate data
dependencies:

• Black: RAW dependency

• Red: WAR dependency

• Blue: WAW dependency

• Evaluated nodes are marked gray

• Leaf nodes indicate
starting points for
evaluating a smart
container.

• Internal nodes are
skeleton invocations,
corresponding to a
call in the program.

f0

f1

f2

f0

f1

f2

 Access pattern without tiling Access pattern with tiling

Add

Mult

• For data locality optimization: consider sequences of
skeleton invocations to enable tiling across entire sequence

• Inspiration from the Spark framework for big data analytics

• Locality is even more important on Hadoop clusters where
the access times are much higher

• Solved with lazy evaluation: a lineage (DAG) of trans-
formations on data is built up until an action is required

• Spark containers are single-assignment, unlike SkePU

• In SkePU, Maps are ”transformations” and other operations
are ”actions”, extensible to other skeletons as well

• Lineages give run-time information of actual program flow
(dynamic rather than static analysis)

• Once an action is required on a container, the lineage is
traversed backwards, following dependencies, and its nodes
are evaluated starting from the roots

• Skeleton calls may be evaluated globally out-of-order, 
but still in-order w.r.t. data dependencies

• Microbenchmark: iterative
sequence of Map invocations
(repeated squaring)

• Varying container size 
and tiling chunk size

• Chunk size approaching data size
causes behaviour as if no tiling

• Chunk size possible to expose as
tuning parameter

Vector<float> v1, v2, v3, v4, v5, v6, v7, v8, v9;
auto add = Map<2>([](float a, float b){ return a+b;});

add(v1, v3, v4); // transformation using Map instance
copy(v9, v1);
mult(v2, v1, v3); // copy, mult, square, and reduce
square(v1, v2); // are also skeleton instances
add(v5, v5, v1);
add(v5, v5, v9);
add(v6, v7, generate(v6, 5.f));
for (int i = 0; i < 5; i++)
 add(v8, v8, v8);
reduce(v8); // action point, causes evaluation

